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FOREWORD

The Operations Research Center at the Massachusetts Institute of
Technology is an interdepartmental activity devoted to graduate educa-
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Office under Contract DAAG29-76-C-0064.

The author also wants to acknowledge research support from the
M.I.T. Energy Laboratory through Department of Energy Contracts
El1-1-4119 and EX-76-A-01-2295.

ABSTRACT

This paper presents several mathematical programming models
for planning expansion of electricity generating capacity by utilities.
The objective considered is to minimize the cost of meeting a given
set of demands over a multi-period planning horizon. In this formu-
lation, the problem naturally decomposes into two parts - determining
the optimal plant capacity investments over the entire horizon and
determining the optimal operating schedule for the generating plants
in each period.

This paper discusses how mathematical programming decomposi-
tion techniques can be used to exploit this natural decomposition.~—_
Because the operating problems often have simple structure which can
be solved essentially in closed form, efficient decomposition algo- \
rithms for the entire problem can be formulated. Three related models
are presented - one based on linear programming, one based on non-
linear programming for the case when plants are completely reliable,
and one based on nonlinear programming for the case when plants can
fail randomly. 1In this probabilistic case, the technique of prob-
abilistic simulation is used to determine expected operating costs
and system re bt i e i gl

The paper also discusses how these models can be used in peak-
load pricing. , The probabilistic capacity planning model can be used
to calculate the marginal costs attributable to demand at different
times. These ginal costs can be used in an equilibrium problem
to determine peakyload prices. The equilibrium problem can be solved
by a decomposition\approach in which the capacity planning model is
used as a subprobley.
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CHAPTER 1

INTRODUCTION AND SUMMARY

Like other types of industrial firms, electric uti-
lities have the problem of planning their capital invest-
ments in generating (or manufacturing) plant to meet the
future demands of their customers. In general terms, the
problem to be considered is to find a minimum cost capa-
city expansion plan to meet forecast demands for electricity
over a multi-year planning horizon, usually twenty to thirty
years. Cost in this problem has two components, the initial
capital cost of each plant to be built and the continuing
cost of operating the system of generating plants to meet

the customers' demand.

An important characteristie of the demand for electri-
city is that it is highly time-dependent, varying consider-
ably both in the course of a day and in different seasons
of the year. Thus, though enough generating capacity must
be built to meet the peak levels of demand, some of that
capacity will be idle during a significant fraction of the
time. Therefore, minimizing the cost of meeting demand'
involves trading-off the capital costs of the plants, which
for a given tyve of plant depends chiefly on its capacity,

against their operating costs, which for a given type of
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plant depends chiefly on the amount of energy it generates.
The amount of energy a plant generafes is determined by the
fraction of the time during which it operates. A plant

which operates almost all the time, called a base-loaded

plant, must be inexpensive to operate, but it may be
worth a high capital cost because it will seldom be idle.
On the other hand, a plant which operates only during peak

periods of demand, called a peak-loaded plant, will often

be idle and so must not be expensive to build, though it

may be worth operating at high cost for short periods of

time. Plants which fall between the base- and peak-loaded
plants in the capital/operating cost trade-off, called

cycling plants, are operated part-time, as the load cycles
between base and peak levels. The distribution of a utility's
generating capacity among base-loaded, cycling, and peaking

plants is called its generation mix.

An important characteristic of the electric power
industry is that utilities are obligated to serve whatever
reasonable demands may be placed upon them by their customers.
Thus utilities are very concerned with the reliability of
the service they provide, and they maintain additional
generating capacity beyond what is needed to meet the

expected peak load to provide a reserve margin. However,

because of random fluctuations in demand and random failures,
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or outages, of generating plants, utilities cannot guarantee
that they will always be able to meet demand, so they must
aim for a standard of service based upon some probabilistic
measure of reliability. Failure to meet demand is called

loss of load, and one of the most commonly used measures of

reliability for system planning is called loss-of-load

probability. Stochastic factors also make the cost of

meeting demand uncertain, so that the utilities must use
some probabilistic measure of cost in optimizing their

planning decisions.

Historically, electric utility capacity planning has
been based upon the twin criteria of generation mix and
reserve margin. Economic considerations of minimizing cost
determine the generation mix to be used, and reliability
considerations determine the reserve margin to be maintained.
Often the relationships between cost and generation mix and
between reliability and reserve margin have been known to
utility planners only through experience and heuristic
rules of thumb. However, there has been considerable work
done to develop more exact tools for utility capacity
planning. These tools include mathematical programming
planning models and probabilistic methods for measuring

the reliability of electricity supply.

P PP Y
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Mathematical programming models have been in use for
capacity planning by electric utilities for about twenty-five
years. An excellent survey of the models used and the
extensive literature on the subjeét has been presented by
Anderson [1]. Anderson distinguishes different kinds of
models that are used at different stages of the planning
process. Initial candidate plans are developed with the
help of global models which determine the optimal capacity
expansion investments. Then simulation models are used
to determine the costs of operating each of the candidate

systems. Finally, various marginal substitutions can be

made to improve a candidate plan.

The global models used in the first stage contain
within them less detailed versions of the simulation models,
since in order to determine the cost of a capacity expansion
plan, the operating cost must be determined. Reliability
standards are handled at this stage by making a priori

estimates of the reserve margins required.

More detailed simulation models are used in the second
stage to provide more accurate estimates of the operating
costs. Probabilistic methods are also used at this stage
to assess reliability. There is usually considerable
iteration between the global and simulation models until

a candidate plan has been found which is acceptable both
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in cost and in reliability.

Probabilistic methods for measuring the reliability
of electricity generating systems have been in use by
electric utilities for more than thirty years. A brief
history and bibliography can be found, for example, in
Billinton [ 6,7 ]. Early work in this field was concerned
with the methodology for calculating appropriate reliability
measures and with their use for evaluating generating
capacity reserve requirements. A typical use of these
methods has been to determine the timing of capacity
additions to a system. A reliability index is computed
as a function of the system peak load, and when the load
has grown to a point where the reliability is unacceptably
low, the next unit on the capacity expansion schedule is

added.

There are two basic approaches to the measurement
of utility system reliability. The one which will be

used in this thesis is the loss-of-load-probability method,

mentioned above, which measures the expected amount of
time during which the system will be unable to meet demand.
The other is the frequency-and-duration-of-outage approach,

which measures the expected time between loss of load

incidents and the expected duration of these incidents.
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One of the major developments in the application of
probabilistic methods to capacity expansion planning was

the invention of probabilistic sinulation models hv

Baleriaux et al. {f 3} and Booth { 9)., These models
extend the loss of load probability method to compute

not only reliability indices related to the loss of load
probability but also the expected syvstem operating costs
when random plant outages can occur. Furthermore,
probabilistic simulation gives an efficient recursive
technique for these calculations. Using probabilistic
simulation, it is possible to desiaon mathematical pro-
gramming models for planning generating capacity expansion,
of the type discussed by Anderson, which explicitly take
into account reliability criteria based upon probabilistic
measures. The key to marrving cost minimizing capacity
planning models to probabilistic reliability calculations

is the use of mathematical programming decomposition

technigues.

A major theme of this thesis is that efficient
methods for solving the capacity expansion planning
problem can he created by using decomposition techniques
to exploit its natural structure. This structure arises

from the inclusion of the problem of optimally operating

= i e T
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the generating system as a subproblem within the larger
problem of planning capacity expansion., In addition to
their usefulness in desiqgning efficient solution algorithms,
the decomposition techniques have two other advantages.
First, they lend considerable insight into the uncderlving
economics of the capacity planning problem. Second, they
encourage the design of hierarchical models with modular
structure. Such a structure in a model facilitates under-
standing how it operates, validating it, and modifying and

exXxtending it to solve new problens.

Procedures based on decomposition methods can
efficiently solve the capacity expansion planning problem
because they can take advantage of a special property of
the problem - when the capacities of the plants to be

built are fixed at trial values, the subproblem of mini-

mizing the operating costs can be solved very simply.

As will be shown in the following chapters, the operating
subproblem can often be solved in essentially closed form -
no mathematical programming algorithm is required, From

the solution of the operating problem, shadow prices on

the trial plant capacities can be derived, representing
the value of marginal changes in those capacities in
changing the operating costs. These shadow prices can

be used to find improved trial capacities. The trial
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values are generated by solving a master problen,

corresponding to determination of the optimal capacity
investments, in which the shadow prices are used to

modify the capacity costs of the plants, An iterative
scheme which alternates between solving the master prohlen
for trial plant capacities and the subproblem for the
shadow prices on these capacities can be used to converge
to an optimal capacity expansion plan. These decomposition
procedures are broadly applicable to the capacity expansion
planning problemr, and in later chapters, it will be shown
how they can be used in several different formulations of

the problem.

A second major theme of this thesis is the integration
of mathematical programming models for capacity expansion
planning with probabilistic measures of system reliability.
This integration is accomplished by using probabilistic
simulation as the operating subproblem of the capacity
expansion model. Shadow prices associated with the trial
plant capacities in the prohahilistic simulation can ke
computed and used in a decomposition algorithm to find
the optimal capacity expansion plan. The advantage of
this integrated model is that a capacity expansion plan
can be developed which meets explicit reliability standards,

based on probabilistic measures, wiile mininizing expected

= = D e - ——
T p——— T T —p— — — e e
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costse.

A third major theme of this thesis is the integration

of capacity expansion planning with peak-load pricina

of electricity. Peak-load pricing is based on the econonic
concept that since the marginal cost of supplyinag electricity
depends on the load, which varies by time of day, the price
charged should also vary by time of day. There has been a
great deal of research concerned with the optimal pricing
of electricity, largely separate from the research on
capacity planning. However, it has heen widely noted that
the pricing decision and the capacity planning decision

are interrelated and must be made jointly. Furthermore,
since peak-load pricing is rapidly moving from theoretical
consideration to actual implementation, there is a need

to develop pricing models which can realistically capture

the complexity of the capacity planning decisions.

Decomposition techniques are natural tools for
integrating the capacity planning decision with the pricing
decision. As will be shown, the decomposition models
easily and naturally produce the marginal cost information
that is required for the pricing decision. A pricing model
can be formulated in decomposition style by regarding the
capacity planning model as a subproblem to compute the

supply cost and formulating a master problcen Lo conpute a
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supply-demand equilibrium. Vhile much work remains in
formulating practical peak-load pricing models, this
paper will demonstrate how the decomposition approach

can be useful in their formulation.

This work is divided into three major parts. The
first part introduces three mathematical programming
models for utility capacity expansion planninag, based
on decomposition techniques. The second part discusses
the technical details of the decomposition procedures for
two of the models presented in the first part. Finally,
the third part discusses an application of decomposition

techniques to the problem of computing peak-load prices.

Part One begins with a geﬁeral statement of the
capacity expansion planninag problem. This problem is to
find a capacity expansion plan which meets given, forecast
demand for electricity over » horizon of twenty to thirty
years at minimum cost, whic .ncludes hoth the capital
costs of additional generati~g capacity and the costs of
operating that capacity. The following chapters present
three specific models - a fornmulation based on linear
prograrming, one based on nonlinear programming, and another
using nonlinear programming which incorporates probabilistic

simulation.
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In Chapter 2, the capacity expansion planning

problem is formulated as a linear proaran. It is intended

to demonstrate, using a simple linear model and ordinarv

Benders' decomnosition, techniques that will be generalized

for use in the more complicated models presented in later
chapters. In the linear program formulation, Benders'
decomposition is used to separate out the operating

subproblens from the whole capacity planning mocel,

These subproblems, vhich are themselves linear programs,
can be solved analytically, wvithout requiring the use of
the simplex algorithm. Given a trial capacitv expansion
plan, the duals of the subproblems can be solved for

shadow prices, which show the marginal changes in operating

cost caused by small changes in the trial plant capacities.

These shadow prices are used in deriving the naster problen

to adjust the capacity cost coefficients. The master
problem, also a linear program, is solved iteratively for
the trial plant capacities, Iterations continue, alter-

nating between the master and subproblems, until an
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optimal capacity plan has been found.

In Chapter 3, the capacity expansion planning
problen is reforrwulated as a nonlinear program., The non-
linear formulation is smaller than the linear formulation,
because it uses a more exact representation of the problem
in place of the discrete approximation used in the linear

formulation, A technique called generalized Benders'

deconposition is used to separate out the operating

subproblems from the whole capacity expansion model. The
subproblems are nonlinear, but they can still be solved
analytically, and the shadow prices can be derived by
applying the Kuhn-Tucker optimality conditions. The shadow
prices are used in deriving the master problén, which turns
out to be a linear program. Thus, the nonlinear part of the
problen is confined to the subproblems, where the solutions
can be obtained very simply. The explicit optimization
occurs in the master problem, which is linear. As before
the solution algorithm proceeds iteratively, alternately
solving the master problen for a trial capacity plan and
the subproblems for the shadow prices, until an optimal

capacity plan has been found.

Both the linear and nonlinear prograrmming models

discussed above consider a deterministic problem in which

plants arc¢ alvays available and there is no uncertainty

il
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about whether demand can be met. In Chapter 4, the
nonlinear programming formulation is extended to con-
sider the case in vhich plants can fail randomly, bv

including probabilistic sinmulation in the subproblenms.

In this case, it cannot be assured with certaintv that
demand will always be met, so it is necessary instead

to specify a probable reliability with which demand will

be met. Using probabilistic simulation in the subproblems
allows computation of the expected costs of operating a
set of trial plants and of explicit probabilistic
reliability measures. The actual computation of the sub-
problem solution is somewhat more involved than in the
previous models; however, it still does not require the
use of an explicit nonlinear optimization algorithm. As
before, the shadow prices on the trial plant capacities
are derived from the optimality conditions for the sub-
problems, The operating subproblems are again separated
from the capacity planning model u§inq generalized DBenders'
decomposition, and the shadow prices are used to derive
the master problem, which again is a linear program.

Thus again, the difficult nonlinear, probabilistic part

of the problem is confined to the subproblems, where it

ey
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can be solved very easily. The explicit optimization is
performed in the linear master program. Chapter 5
presents the results of some computational experiments

with the probabilistic capacity expansion planning model.

The models discussed in Part One use a number of
simplifying assumptions in order not to obscure their
basic structure. Only thermal, and not hydroelectric or
other nonthermal, plants have been considered. Capacity
and operating costs have been represented as linear
functions, and plants of anv size can be built, Plant
locations, transmission costs, and environmental quality
standards have not been considered. Planned maintenance
outages and use of spinning reserves and multiple-valve
point plants have not been included, Many of these
assumptions can be relaxed without disrupting the structure
of the problem, and the decomposition approach can still
be used. In Chapter 6 a number of extensions to the basic

models are discussed which include these features.

Part Two of this thesis discusses the more technical
aspects of applying generalized Benders' decomposition
to the two nonlinear programming models presented in the
first part. Parallel arguments are followed in Chapters 7

and 8 in developing the decomposition for the deterministic

T p— o
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and probabilistic models, respectively., Tirst, the generalized
Benders' master prohlem is derived, and the solution
algorithm is described. Then the solution of thc subprob-
lems and their optimal shadow prices are discussed. This
discussion also includes the convexity and duality properties
of the subproblem, which are required to justify the deriva-
tion of the master problem. Finally, the special situations
in which the subproblems are infeasible or deagenerate are
discussed. Chapter 9 discusses some computational

methods for the probabilistic simulati&n subproblen.

While this problem has a fairly simple solution, the
computational effort involved in calculatina it could be
substantial. This chapter proposes a relatively efficient

technique for the computation.

Part Three of this thesis discusses the application
of decomposition methods to the problem of determining
peak-load prices for electricity. If the demand for
electricity is varied as a parameter in the problen, the
capacity expansion models.presented in Part One can be
regarded as generating a cost function for supplying that
electricity, both the cost and the expansion plan varving
as demand varies. This cost function can be embedded in a

larger equilibrium problem in which demand is allowed to

— e e L = o = »
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vary as a function of price. This equilibrium problem
can be solved for bhoth the prices for electricity and the
capacity expansion plan. The key to solving the equili=-
brium problem is to use the capacity expansion model to

compute the marginal costs of supplying electricity.

The approach used in this thesis differs from nore
traditional approaches to peak-load pricing in two
respects. First, it links the determination of peak-load
prices to a long-range capacity expansion planning model
by using this model to generate the supply cost function,
Seconf, it uses the probabilistic version of the capacity
planning model, presented in Chapter Four of the first
part. The marginal costs computed using this model differ
sonewhat from those used in more traditional treatments,

. since their time dependence is related to variations in the
reliability of the supply rather than to the load level
itself. Thus the model can consider the effects of random

plant failures and system reliability levels on prices.

The third part begins with an introduction to the
peak-load pricing problem and a brief discussion of some

previous research,
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Chapter 10 discusses the use of the probabilistic

capacity planning model to calculate the marginal

costs of supplying electricity. A method is presented

for determining the contributions by components of

demand at different times to the system marginal costs.
This method is based on the probabilistic simulation
recursive argument. It is then shown how the marginal
costs are related to the dual multipliers associated with
the optimal capacity plan. This relationship is discussed

in more rigorous detail in Chapter 11.

Finally, Chapter 12 discusses the use of these
marginal costs in an equilibrium model for computing
peak-load prices. The equilibrium problem can be solved
by a decomposition algorithm in which the capacity
expansion model is used as a subproblem. The master
problem contains the price-sensitive demand model. Trial
values of the equilibrium demand are determined in
the master problem and are passed to the capacity
planning: subproblem from which the marginal costs

are calculated. The marginal costs are passed back to the
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master problem where they are used to compute a new trial
demand estimate, and the process continues iteratively
until an equilibrium has been found. This chapter concludes
with a discussion of some of the practical issues involved

in implementing the peak-load pricing model.

In a larger context, the models presented in this
thesis demonstrate how decomposition techniques can be
applied, in general, to economic planning models. De-
composition methods have several advantages which make

thém attractive for designing large economic models. They

permit modular design of these models, in which the models
are stguctured as essentially independent modules which
communicate with one another throuch vvell-defined interfaces.
Apart from these interfaces, the modules appear as "black
boxes" to each other, in the sense that the internal
structure of any module is of no concern to the other
modules. Modularity permits hierarchical, "top-down" design
of models, allowing the details of model structure to be
defined by successive refinement. Furthermore,
hierarchical, modular models are easier to understand and
to verify, since a person need only consicder the inter-
actions of the nodiles at any level of the hierarchv and

not their in: :nal workings. Finally, modular models
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are easier to maintain and to modify, since chances can
be made internally to a module without affecting the other
modules. A recent trend in computer software design has
been to emphasize top-~down modular design using structured

programning. Decomposition techniques extend these ideas

to the mathematical structure of the model itself.

Decomposition models also mirror the structure of
decentralized‘economic systems. They define interfaces
between market sectors, or model modules, in terms of
econonic variables, prices and quantities of resources.,
Subject to these market indicators, each module acts to
optimize its decisions. The similarity between model
structure and economic structure simplifies model design
and lends insight into the structure of the economic system

under study.

In closing this Introduction, a word about notation,
A great many indexed variables and constants appear in
the following models. In order to simplify the notation,
like items will often be collected together in a vector,
which will be designated by the same symbol, with an

underscore to indicate the vector. Thus Y is a vector

1

consisting of the items Y~ where the index i runs

from 1 to I. Indices will be represented by small
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letters; the upper limit of the range of an index will
be represented by the same letter capitalized. Many

of the models presented have a time-~-staged structure, for
which the same variables and constraints are replicated
in each time period. Time periods will generally be
designated by the index t, but in showing the model for
a generic period, vhich does not interact with the models
in other periods, the index t will not be shown, but
only implied, in the interest of clarity. However, when
the models for different periods are brouaght together, the
index t will be used to distinguish them. An index of

notation is provided at the end of the thesis.

Finally, a distinction should be made hetween the
terms energy and power. Pover is the rate at which energy
is delivered. Thus power is an instantaneous quantity.

In speaking of the load on an electric power system or
of the capacity of a generating plant, instantaneous
power is meant, Hogever, in speaking of operating cost,

the cost of producing energy is usually intended.

ol
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Part One

Mathematical Programming Models for

Electric Utility Capacity Planning 1
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A. Organization of Part One

The purpose of Part One is to formulate three mathe-
matical programming models for utility capacity expansion
planning using decomposition techniques. The models are
a linear programming formulation presented in Chapter 2,

a nonlincar programming formulation presented in Chapter 3,
and a nonlincar probabilistic formulation presented in
Chapter 4. The underlying idea of the decomposition
approach used in all of these models is to separate the

capacity planning problem into two parts - a master problem,

which generates trial solutions for the optimal capacity
expansion plan, and subproblems, which determine the
optimal opcrating scheme for each trial generating system.
The attractive feature of the decomposition method is that
when these subproblems have special structure which allows
them to be solved easily, this property can be exploited

in solving the larger problem in which they are embedded.
The operating subproblems in each of the capacity expansion

models presented here have such special structure.

The presentations of the models in the following
chapters all follow the same set of steps. First, the
problem of optimally opcrating a given set of generating

plants is formulated as a mathematical program, and the

e e

Al

ad
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special structure of its solution is discussed. It is
shown how the Kuhn-Tucker optimality conditions of this

problem can be used to derive shadow prices, which give

the marginal changes in operating cost caused by small
changes in the capacities of the plants. Second, the
problem of finding an optimal generating capacity ex-
pansion plan is formulated as a mathematical program,
with the operating problems embedded as subproblems.
Third, it is shown how the decomposition approach can
be used to develop a solution procedure for this problem.
The decomposition principle is used to separate out the
operating subproblems from the capacity planning model.
The shadow prices are used to generate a master problem,
which is another mathematical program that is solved

for trial capacity expansion plans.

The algorithm developed from the decomposition
principle is an iterative one. For each trial capacity
expansion plan, the subproblems are solved to determine
its optimal operating cost and the shadow prices on its
plant capacities. These shadow prices are used to derive
a new constraint in the master problem, which can then be
solved again for a new trial plan. The procedure is con-
tinued, alternating between the master and subproblems,

until an optimal capacity expansion plan has been found.
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This part is organized so that successive models use
generalizations of concepts presented in the preceding
models. The linear program presented in Chapter 2 is
primarily intended to demunstrate the decomposition
technique using a simple linear model and ordinary Benders'

decomposition. This model is reformulated as a nonlinear

program in Chapter 3 and generalized Benders' decomposition
is applied. 1In Chapter 4, the nonlinear model is extended

to the probabilistic case by using probabilistic simulation

in the operating subproblems. Chapter 5 presents some
results of computational examples for this probabilistic
model. Finally, since the models presented in the preceding
chapters have used some simplifying assumptions in order not
to obscure their basic structure, some extensions of the
basic models are presented in Chapter 6. In many cases,

the structure of the problem is not disrupted, and the

decomposition procedures can still be used.

The remainder of this introduction states the capacity
expansion planning problem in general form and introduces

some of the notation.

T — = A -
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B. Definitions and Problem Statement

This section presents a general statement of the
problem to be discussed in the later chapters of Part One
and introduces some of the concepts and definitions to be
used. The problem to be considered is to find a minimum
cost capacity expansion plan to meet forecast demands for
electricity over a multi-year planning horizon, usually
twenty to thirty years. As has been emphasized in the
introductory chapter, the cost to be minimized consists
of two components - the initial capital cost for the
generating plants to be built and the continuing cost of
operating the generating system to meet customer demand.
This problem is formulated mathematically below. The
formulation and notation generally follows that of

Anderson [ 1].

Define the planning horizon as the time interval from
0 to T. 1Initially, any instant in this interval will be
indicated by a continuous parameter, Tt; however, later,
it will be useful to regard the planning horizon as being
made up of discrete periods (usually years or seasons)

indexed by a discrete parameter t.

Let va be the power output capacity of a plant

in the system, where Jj =1,...,J denotes the type of plant
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{nuclear, fossil-fueled steam, hydroelectric, gas turbine,
etc.), and v indicates the vintage, or year of commission-
ing of the plant. (Since the planning horizon begins at
time 0, use of a negative v, -V < v < 0, will indicate

an initially available plant, so that the capacity va
is given data, while a positive v, 0 < v < T, will indicate
a plant yet to be built, so that va is a decision
variable.) Let ij be the present value capital cost

per unit of capacity of the plant (j,v) to be built.

Let Yjv(r) be the instantaneous power output of the

plant at time 1, and let Fjv(r) be the instantaneous cost

of operation per unit of output, discounted to the present.

In order to simplify notation, it will at times be
convenient to consider the capacities va as elements
of a vector X. For this purpose, the indices j and v
are considered combined into a single index, unique for
each plant, for elements of the vector X. Similarly,
the Yjv(T) can be considered elements of a vector Y(r).
Vectors and matrices of other data and variables will be
introduced from time to time whicﬁ are conformable with

these vectors.

Let Q(t) be the instantaneous powér demand, or load,

on the system at time 1. It will often be convenient to
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work with a discrete approximation to this time profile
of demand. Period t 1is divided into discrete sub-
intervals s =1,...,S, each of length es (typically es
is one hour) during which the load is approximately constant

at level Qts'

The discounted operating costs of plant (j,v) over
the interval 1 =0 to T are given by
T

£ Fip ()Y, (0)dr,

and the present value capital cost for the plant is given by

G Xt
IV 2y

The objective of the planning problem is to minimize total
discounted cost of building and operating the generating
system:

J T T J T

B *[ & B Fip (DY, ()ar.

minimize CiXsy
j=1 v=1 IV 3 0 j=1 v=-V

Using the discrete-time approximation given above, the

integral can be replaced by a sum to give

J T T S J t

minimize b % G, D T T X

F. Y-
j=1 v=1 jv v t=1 s=1 j=1 v=-V jvts jvts
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where Yjvts and Fjvts are the output and operating

cost per unit output, respectively, approximated as constant

during interval s of period t (assume that operating
costs do not change during period ¢, so that

Fjvts . Fjvt°es)'
There are several types of constraints on this
optimization. The first is that instantaneous power out-

put of a plant cannot exceed its capacity.

j=1'---,J
0 < ¥y, (1) < Xy V =V et
Te (0,T)

ar in discrete time

j=ll"'lJ v -V'oo-,t

t=l,---,T S

l,---'s

The second constraint is that instantaneous power demand

must be satisfied

J 1
E B %..01) 3 Q%) Te (0,T)
j=1 y=-v IV

or in discrete time

J t t=1'---'T
z I Y. > Q
j=1 v=-y JVES = "ts s=1,...,8
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where Q is the load during interval s of period t,

ts
approximated as constant. These two, the capacity con-
straint and the demand constraint, are the basic constraints

of the model.

Additional constraints can be included as extensions
to this basic model. These extensions are discussed in
more detail in Chapter 6, but a brief discussion is in

order here. One extension is the inclusion of hydroelectric

plants. The distinguishing characteristic of a hydroelectric
plant is that the total amount of energy it can generate
is limited by the amount of water stored behind the dam.

Such an energy constraint has the form

[ Y (rldt < H

(1)
Tel hv

where h is the plant-type index for hydroelectric plants,

I is a time interval and H,_ (I) is the amount of energy

hv
available to the plant in interval I. Usually this interval
is a season or some shorter time period. In discrete form

this constraint is

Z ., Y
segl

hvts = Hhvt(I)

The amounts of hydro-energy H (I) may be given, or

hvt

Py
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they may be decision variables themselves, generating

cost terms in the objective function. More complex con-
straints may be generated by including pumped-storage

hydro facilities. Also, constraints on polluting emissions
from thermal electric plants may be cast in a form similar

to the energy constraints on hydroelectric plants.

Another extension of the basic model is to include
additional constraints on the plant capacities, xjv'
It is common to require the capacity variables to be
integer-valued, to represent the discrete~sized blocks
in which plants can be built and the discrete site alterna-
tives on which to build them. In addition, since electricity
generating plants often exhibit economies of scale, the

linear capital cost functions could be replaced

(Cg—28s
v v
by concave cost functions represented piecewise-linearly,

generating a mixed integer program with addition constraints.

Finally, there may be constraints called "guarantee
conditions,” which limit the chance that demand will not
be met due to plant failures and unexpected peaks in demand.
Often these conditions are approximated by multiplying the
capacity of each plant by its "availability factor," to
reduce its effective capacity, and requiring that the
effective system capacity exceed the expected peak demand

by a specified reserve margin. Such a constrain:t would

il
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be written

X X R X > (l+m)Qt

j=1 va-y IV IV =

*
where pjv is the availability of plant (j,v)., Qt is
the expected peak load in period t, and m is the reserve
margin. However, a more realistic representation of

reliability can be formulated using probabilistic methods.

These will be discussed in detail in Chapter 4.

n— S — o B — P I S
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CHAPTER 2

A LINEAR PROGRAMMING MODEL
A. Introduction

This chapter discusses formulation of the generating
capacity planning problem as a linear program. The linear
form allows the straightforward application of Benders'

decomposition principle; decomposition of the nonlinear

models of Chapters 3 and 4 is similar but somewhat more
complicated. The derivation of Benders' decomposition

in this chapter, using linear programming decomposition,
parallels the development of the more general decomposition
techniques for these nonlinear models, discussed in Part
Two. Thus, this chapter provides a simple demonstration

of techniques which will be used throughout this thesis.

The steps used in this chapter to develop a procedure
for solving the capacity expansion planning problem as
a linear program are those outlined in the introduction
to Part One. In the next section, the problem of optimally
operating a system of generating plants of given capacities
is formulated as a linear program. This program has a
simple, analytic solution (at least in the case when all
plants are thermal plants with linear operating costs)

called merit-order operation. Furthermore, the duality

properties of this problem can be used to obtain shadow

prices on the plant capacities. In the following section,

_— - A .
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the capacity expansion planning problem is formulated

as a linear program, with the operating problems as sub-
problems. Then Benders' decomposition principle is
applied to develop a solution procedure. The subproblems
are separated from the main problem, and a master problem
is derived using the shadow prices generated by the sub-
problems. The master problem is a linear program which

is solved iteratively for trial capacity expansion plans.

The technical details of this development are  presented '@ .

as a prelude to the technical development of algorithms

for the nonlinear models in Part Two.

Historically, linear programming was the first
mathematical optimization procédure to be applied to
the utility capacity expansion problem. An excellent
survey of the models used and of the extensive literature
on the subject has been presented by Andersonl. Much
of the early work on linear programming models was
done at Electricité de France, presented by Massé and
Gibratz. Another LP model has been developed by
Fernandez and Manne3. More recently, the LP formulation
has been extended to a mixed-integer programming formula-
tion, which more realistically represents project in-
divisibilities and fixed costs, by Gately4 and by Noonan

and Giglios. The model of Noonan and Giglio is solved

e i oy = - - e
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by a Benders' decomposition-based algorithm, which is a

standard method for mixed-integer programs.

While Benders' decomposition has been applied
before in solving these LP-based models, it apparently
has not been used to exploit the special economic structure
of the problem. The model presented could be extended to
include integer variables to represent plants of fixed
block sizes and economies of scale, as is discussed in
Chapter 6; lhowever, the primary purpose of the model
presented in this chapter is to demonstrate the techniques
which will be extended to the nonlinear models in later

chapters.
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B. Optimal Operation of the Generating System

The basic problem stated in the introduction to
Part One can be solved by linear programming; however,
it can have a very large number of constraints and
variables. In particular, there is one variable for the
operating level of each plant in each time interval,
Yjvts' and a corresponding capacity constraint, and
there is one demand constraint for each interval s of
period t 1in the planning horizon. Thus, for realistic
problems, the linear program can be quite large, and it
has been found to be expensive to solve using standard
computer algorithmss. However, the problem has a
special structure, and efficient methods for solving the
problem can be developed by using decomposition techniques
to exploit this structure. As has been noted above, the
problem of minimizing the cost of supplying a given demand
for electricity falls naturally into two components -
finding a minimum-cost operating scheme for a given
generating system and finding a generating system which
has minimum total cost. The former problem can be cast

as a subproblem which can be used in solving the latter

problem.

Consider then, the subproblem of optimally

operating a given set of generating plants in the
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subinterval s of period t. The problem is to

J t
minimize jﬁl vﬁ-v Fjvts'ijts (2501
J t
subject to jzl vﬁ-V Yjvts > Qts (2.2)
0 < Yjvts < xjv (2.3)

The solution to this problem is very simple: the plants
are successively loaded up to their capacities, in order

of increasing operating cost F. , until the demand

jvts
constraint (2.2) is satisfied. The last plant to be

loaded, called the marginal plant, will generally not

operate at full capacity.

The ordering of the plants by increasing operating

costs is called the economic loading order or merit order.

Thus, the optimal solution to the operating problem
(2.1) - (2.3) is called merit order operation. It will
be convenient to re-index the plants in merit order, and
for this purpose, it is useful to define indicator
constants which convert the (j,v) indices into merit
order indices in period t. Note that the merit order

may be different in each period, as new plants come

P Y e




on-line, old plants wear out, and operating costs change.

Define the indicator constant

it
djv equal to one

if the plant whose index is (j,v) is the iEE plant of

the merit order in period t and equal to zero other-

wise.

which holds the iR

J t
z z s
j=1 v=-V

where It

in period t.
a vector

matrix dt

it
viiv

which sorts

position in the merit order.

i - l'.o-'I

These indicators are used to pick-out the plant

Define

t

is the number of plants in the merit order
When the plant capacities are combined into
X, these indicators will be combined into a

into merit order; thus 6t§

gives a vector of plant capacities in merit order in

period t.

It is useful, before going on, to note some properties

of the indicators d%t:
jv
J 3 .
8 B % 5%‘";=1,
j=1 v=-v 3

only one plant can occupy

the 1i

order;

th

position in the merit
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. it e .
ii) TR gl B0 if v < t, a given plant
i=) IV -
(j,v) can occupy only one
position in the merit order:
iii) 6;5 = 0 for v > t, a plant with vintage v > t

has not been built yet and
cannot appear in the merit
order in period t;
iv) 1If Fjvt is the operating cost of plant (j,v) in
period t (and operating cost doesn't depend on the

time interval s), define

L
Pt 1 1 eitr
j=1 v=-V v
t
Then FIt < P2t < ... < Pt by definition of the

merit order.
v) Define
¢ J 0 3 J t :
e §F & Sitwmes 50 A e
j=1 v=-y JV IV j=1 v=1 VIV
where the first term consists of the capacities of
existing plants, which are given data, and the second

term consists of the capacities of plants to be built,

which are decision variables.

_— o - . T e ———— L
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Using the merit order notation, the operating sub-

problem given above, (2.1) - (2.3), can be restated as
L e
minimize I FY (2.4)
i=1
L
subject to I Y >0 (2.5)
i=1
0 <yt <xt i=1,...,I (2.6)

There is one such subproblem for each interval s of each
period t. 1In order to simplify the notation, these time
indices will be taken as implicit when there is no inter-

dependence between different time intervals.

Let 7w be the dual multiplier, or shadow-price,
associated with the demand constraint (2.5), and let Al
be the multiplier associated with the capacity constraint

in (2.6). Then the dual problem is to

I =
maximize Qm - I Xlkl (2.7)
i=1
; i i ;
subject to m - A" < F P ER . ¢ (2.8)
i

m™>0, A7 >0 y « (2+9)

- _— -—— - o — R
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The primal problem (2.4) - (2.6) is solved by in-
spection, as was noted above. By the definition of the

merit order, if i < k then F' < FX. Therefore, the

optimal solution is obtained by setting vt = x' suc-
cessively in merit order until the demand constraint (2.5)
is satisfied. The last plant loaded, the marginal plant,

with index i = n, will generally not operate at full

capacity. The optimal solution is

fkl a5 <ion
n-l .
vledlg- xt, i=n
i=l
LD ? i>n-

By complementary slackness, since ¥t < xl for i > n,

i

A" =0, i>n.

i

Furthermore, since Y~ > 0 for i < n,

i ——
F{r=wQ™ = Fl, i < n.

Hence, in particular

n = F}

and therefore

.

candeil,




Consider the economic meaning of the dual solution.
The shadow price n® on the demand constraint (2.5) is
the marginal cost of increasing demand Q, which is just
the cost of operating the marginal plant, the cheapest
plant with slack capacity. The shadow price Ai on the
capacity constraint (2.6) is the marginal benefit of
increasing the capacity of plant i. If the plant is
operating at full capacity (i < n), then this benefit is
just the difference between the cost of operating this
plant and the marginal plant since adding capacity in
this plant reduces the output needed from the marginal
plant. If the plant is not operating at full capacity

(i > n), then increasing its capacity has no value7.

Thus, solving the primal subproblem is simply a
matter of determining the marginal plant, which can be
done by comparing the demand level with the cépacities
of the plants in merit order. Then the dual solution can
be obtained by a few simpie computations. The simplex
algorithm is not required to solve the subproblems, and
hence their solution is very efficient. This property
of the subproblems can be exploited to solve the entire
capacity planning problem efficiently, through the use
of a decomposition prccedure. The next section describes

the use of Benders' decomposition principle.
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C. An Optimal Generating Capacity Expansion Model and Its

Solution by Benders' Decomposition

Consider the structure of the full capacity ex-
pansion planning probiem in linear program form. For
each interval s and period t, there is an operating
subproblem (2.4) - (2.6), which can be written in the

following matrix form

minimize Etsxys (2.4)
[ ]
subject to e Zts > Qts (2.5)
0 .<_ th © Gt.)_(. (2.6)
where th i's the vector of plant output variables in
4
interval s of period t,
gts is the corresponding vector of operating

costs;
e 1is a vector of ones; and
6. X is the vector of plant capacities,

sorted into the merit order of period t.

Then the problem of finding the minimum cost capacity

expansion plan can be written
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' = S
minimize C X + I I Feelis
t=1 s=1
: 1]
subject to e Y _ > Q. om0 T
0 < th < 6t§ 8 5 LpooopsS
X>0

where C 1is the vector of plant capacity costs. (For

(2.10)

(2.11)

(2.12)

(2.13)

simplicity of notation, it has been assumed that all ele-

ments of the vector of plant capacities are decision

variables; however, existing plants with given capacities

could easily be included in the formulation.) Written

out in full, this problem takes the form

g g T s It

minimize L B (ConXic, B, °F z I F
j=1 v=1 IV IV =1 s=1 i=1

1tsY1ts

It its
subject to I Y > Q EO=L AT YS=AS S
= — “ts
i=1
. J t
0y < £ I 6 X tel,...,T s=1,...,S
j=1 v=-v V3
i=l'-oc'It
x- Z_o j=l,.oo'J V=l,...,T

The basic idea of Benders' decomposition is to

divide the problem into the two parts mentioned above,

(2.10)

(2.11)

(2.12)

(2.13)
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determining the optimal investments in generating capacity
and determining the optimal operation of the generating
system. Given a trial set of plant capacities, the
operating subproblems are solved to determine the optimal
operation for the system in each period, and a set of
shadow prices on the plant capacities are calculated

from the dual subproblems. These shadow prices are used
to compute adjusted cost coefficients for the plant
capacities, reflecting both their capital costs and their
contribution to operating costs. The adjusted cost
coefficients are used to set up constraints in a master
problem, a linear program which is solved to determine a
new set of trial plant capacities. These new trial
capacities are inserted into the subproblems, and the
solution procedure iterates in this fashion, alternating
between the master and subproblems until the optimal
golution is found. An important advantage of the de-
compositio:: approach is that it is often easier and

more efficient to solve the master and subproblems
separately than to try to solve the entire problem as a
single linear program. The special properties of the
subproblems allow them to be solved easily, without using
the simplex algorithm, and the master problem is generally

a much smaller linear program than the original problem.




53.

In addition, at each iteration both an upper and a lower
{ bound on the cost of the optimal solution are available,
so that the algorithm can be terminated prior to optima-

lity with known error bounds.

The following discussion demonstrates the derivation

of Benders' decomposition for this problem. It is pri-

marily intended to illustrate the principle using a
relatively simple linear model, in order to motivate the
discussion of the more complex decomposition methods for
the nonlinear models presented in later chapters. A full
discussion of Benders' decomposition principle is found-

in Lasdons.

The capacity planning problem (2.10) - (2.13) can

be written in the form

T S ,

minimize {C'X + I £ minimum Etsxts} (2.14)
X e t=1 s=1 theTts g
where T _ is the set of all vectors Y _ which satisfy

constraints (2.5) and (2.6), in interval s of period t

and Q 1is the set of all nonnegative vectors X such
that the sets Tts are not empty. That is, the inner
minimization is just the operating subproblem (2.4) - (2.6)

discussed above. By the duality theorem of linear pro-

gramming, the problem (2.14) is equivalent to

ey S e A P — e e— ~ —c _— —



54,
T S
A 'y + . i )
m;n:m;ze {c'x til szl (ﬂ@ax;muTEA (o, M mAL 8:X} (2.15)
= ts’'=ts ts
where A is a vector of dual multipliers on the capacity

ts
constraint in (2.6), and Ats is the set of dual multiplier

vectors which satisfy the constraints (2.8)

(“ts’its)
and (2.9) in interval s of ¢t. That is, the inner

maximization is just the dual of the operating subproblem

in interval s of t, (2.7) - (2.9).

The set of feasible solutions to the dual subproblem

A is a convex polyhedron which does not depend on the

ts
capacity vector X, and the maximum in (2.15) is achieved

at an extreme point of this set, by a well-known theorem

of linear programming. Let k = 1,...,K. index these

k ,k

extreme points (“ts'xts)'

Then the problem (2.15) can
be written
T (]

minimize {C'X + I I maximum {Q
X en t=1 s=1 k=1,...,K

. k k

tsTts Les X} UEELE)
In order to insure that the primal subproblems have

feasible solutions (that is, the sets Tts are not empty),

it is sufficient to require that enough capacity be built

to meet the peak demand Q: in each period t. This

requirement takes the form of the constraints
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I
t it *
I X > Q B 8| iLpodo it
o7 < %%
i=1
or in vector form
e's.X > QF t=1,0..,T
—t—— t F L L L §
where Q: = maximum Q, .
ts
s= oS

The set § consists, at most, of capacity vectors
satisfying these constraints. Additional constraints
on the capacities imposed in the original problem may

also be included in defining 1.

The capacity expansion planning problem can now

be written from (2.16) in the following form

minimize 2 (2.17)
2,X
subject to 2z > (C' - I DA - o, ¥ (2.18)
T T t=ls=l 5P T 4o gy tS'ES
k=1,...,K
e's, X > oy t=1,...,T (2.19)
x>0

and any other constraints on X imposed in the original

problem.
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This program is the master problem.

The master problem is actually solved by svuc-
cessively generating the constraints (2.18). Starting

with an initial trial set of capacities xl

 the sub-
problems (2.4) - (2.6) are solved for the dual mul-
tipliers to generate the first (k=1) Benders' cut, as
the constraints (2.18) are called. In general, a
relaxed master problem consisting of constraints (2.18)
with k=1,...,2-1 is solved for a new trial capacity
plan §2. The subproblems are then solved with these
capacities, and the associated shadow prices (“ts'lis)
are used to generate the next Benders' cut, with k = 2.
Notice that these shadow prices are used in (2.18) to
adjust the cost coefficients for the plant capacities.
The new Benders' cut is, in a sense, the "most violated"
of the constraints (2.18) not yet included in the master
problem. Since the current set of Benders' cuts in the
relaxed master problem is a subset of the entire set

of such constraints, the value z% generated by solving
ghe master problem at each iteratiion £ is a lower bound
on the cost of the optimal solution. However, if the
current trial values 2z° and 51 satisfy the newly

generated Benders' cut (k=%), the current solution is,

in fact, optimal. If not, then the value of the new
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constraint with the current value 52

T S 2 2 T S
f@ar = 2 I A 8. )X + 1 r Q

t=1 s=1 ~ 5t 7 41 s=1

“2
ts ts

is an upper bound on the cost of the optimal solution,
since the constraints (2.19) guarantee that the trial

2

solution X is feasible.

Though the model presented in this chapter is con-
cerned primarily with satisfying the demand and capacity
constraints, (2.11) and (2.12), the Benders' algorithm |
is well-suited to treat extensions to this basic model
which include additional constraints. Additional con-
straints on the capacity variables X can be incorporated
into the master problem. Even integer constraints on the
capacities can be included, since Benders' decomposition
is a standard method for solving mixed-integer programs.
In this case, however, the master problem is no longer a
linear program. Additional constraints on the generator
output variables Y, s can be incorporated into the sub-A
problems. Some types of these constraints are compatible
with the special structure, so that the subproblems could

still be solved without explicit use of a mathematical

programming algorithm. However, even if this is not the
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case, the decomposition approach simplifies the solution
of the entire problem by breaking it up into smaller
pieces. Further discussion of extensions of the basic

model are found in Chapter 6.
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CHAPTER 3

A NONLINEAR PROGRAMMING MODEL FOR THE DETERMINISTIC CASE

A. Introduction

In this chapter, the generating capacity planning
problem is formulated as a nonlinear program. The non-
linear formulation offers two advantages over the linear
formulation discussed in the previous chapter. First,
the nonlinear version is more compact than the linear
formulation. The large size of the linear program
formulation is chiefly a result of using a discrete-

time approximation to the load profile, Q Thus, there

ts’
must be one operating subproblem for each subinterval s
in period t. The nonlinear formulation uses a continuous

representation of the load in each period t, called a

load duration curve, and uses explicitly the optimality

of merit order operation in formulating a single sub-
problem for each period t. The subintervals s used
in the discrete-time approximation are not needed in the
nonlinear formulation. The second advantage is that the
nonlinear formulation can be directly extended to the
probabilistic case which will be discussed in Chapter 4.
This extension is possible because there is a direct
analogy between the nonlinecar subproblems which will be

formulated in this chavter and probabilistic simulation
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which will be used in the next chapter.

The development of a solution procedure for the
nonlinear formulation in this chapter follows the general
steps described in the introduction to Part One. The
next section discusses the formulation and solution of
the operating subproblems. The formulation uses ex-
plicitly the fact that merit order operation is optimal,
as shown in the preceding chapter, so that the solution
is trivial. However, the Kuhn-Tucker conditions of the
problem can be used to obtain the shadow prices on the
plant capacities, which is extremely useful information.

In the following section, the capacity expansion problem

is formulated as a mathematical program using the operating
problems as subproblems. The use of decdmposition to solve
this problem is described. Since the problem is nonlinear,

the generalized Benders' decomposition of Geoffrionl

must be used instead of the ordinary Benders' decompo-
sition that was used for the linear model. The technical
details of applying generalized Benders' decomposition

to this problem are discussed in Chapter 7.

Historically, the nonlinear programming models for
utility capacity expansion planning grew out of the

linear models in an attempt to reduce the problem to

computationally manageable size. Work on such mocels

e
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has been presented by a numper of authors. Phillips

et 212 have presented a nonlinear model which is similar

in many respects to the model presented in this chapter.
They have developed a solution procedure based on non-
linear programming dual multipliers. Another such model
is described by Bessiére3. A third model, presented by
Beglari and Laughton4, separates the problem into a
capacity expansion planning linear program and operating
subproblems, as is proposed in this chapter, but uses
plant capacity factors, rather than shadow prices, to

link the models together. Apparently, the decomposition

approach presented here has not been considered before.
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B. The Deterministic Operating Problem

It was shown in the previous chapter that merit
order operation is the optimal operating policy for a
generating system (at least for one consisting of thermal
plants). This knowledge can be explicitly included in
the model formulation, resulting in a significant re-
duction‘in the size of the model. However, this reduction

comes at the cost of making the model a nonlinear program.

In order to simplify the calculation of the operating
cost, it is useful to summarize the time varying character-
istics of the load during a given period of time by a

load duration curve. This curve represents a function

G(Q) which gives, for any level of load Q, the amount
of time during which the load exceeds Q. Using the
discrete-time representation of the load introduced
above, the construction of the load duration curve can
be visualized as the rearrangement of the subintervals s
of period t in order of decreasing load level Qts' as
shown in Figure 3.1. The load duration function G(Q)
is therefore monotonically decreasing and is zero for

all levels of the load greater than the peak load Q*.

When plants are loaded in merit order, a given
plant operates onlv when the load exceeds the combined

capacity of all the plants below it in the merit order,

e e R T R R R R O TN
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and then it operates either at capacity or at the level
of excess, whichever is smaller. Thus if plants are

"stacked" under the load duration curve in merit order,
the energy generated by each plant is given by the area

it "cuts out" under the load duration curve (see Figure 3.2).

More formally, define the cumulative capacity of

all plants up to and including plant i as

; i
vt = ¢ X" B =l T
n=1
or recursively,
ot - g7l -yt i=1,...,1 (3.1)

The load level Ul-1 is called the loading point of

plant i, since plant i begins generating when the load

reaches Ul_l.

The amount of energy generated by the iEE plant in

the merit order in a given time period is

gt
/ G(Q)dQ,

Ul_l .

1

a

P W

L A
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and the cost of operating this plant is thus

Fif 1G(Q)dQ,

where F! is the operating cost per unit of energy pro-
duced by plant i. Therefore, the optimal cost of operating

the generating system in a given period is

s J—_— ul
T Ff G(Q)dQ. (3.2)
= i-1

In order for this operating scheme to be feasible, the
system must have sufficient capacity to meet the peak

i load; hence

ul > o+ (3.3)

The problem of minimizing the operating cost (3.2)
subject to the loading order constraints (3.1) and the
peak load constraint (3.3) can be regarded as the operating
subproblem in period t, analogousiy to the subproblems
defined in the previous chapter:
i

I U
minimize I F'f G(Q)dQ (3.2)

i=1 i-1

o U
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subject to Ut - vl ex' i =1,...,1
(3.1)
vt 2o (3.3)
WS OF g 3l L

(Clearly, the load duration curve is defined for a given
period t, and the merit order, peak load, and cost coeffi-
cients all depend on t as well. However, the index ¢t
has been suppressed here for clarity of notation. It
will be used below where needed.) As before, the plant

capacities X! are considered constants in the subproblem.

Of course, optimization of these subproblems is
trivial, because only one of two situations can occur.
If the peak-load constraint (3.3) is satisfied, the
loading order constraints (3.1) yield a single solution,
which is optimal. If the peak-load constraint is not
satisfied, the subproblem is infeasible. However, it is
useful to regard this subproblem as an optimization in

order to compute shadow prices on the plant capacities.

The objective function (3.2) is separable, and it
is convex on the feasible region defined by constraints

(3.1) and (3.3), as will be shown in Chapter 7, Thus
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a necessary and sufficient condition for optimality in
the subproblem is the existence of a set of duval multi-
pliers satisfying the Kuhn-Tucker conditions. Define
Ai and ©m as the dual multipliers, or shadow prices,
on the iEE loading order constraint (3.1l) and on the
peak-load constraint (3.3) respectively. Because (3.1)
are equality constraints, Ai~ is unrestricted in sign
while m must be non-negative. Assuming that the sub-
problem is feasible and that Ui > 0 for all 1i, the
Kuhn-Tucker conditions give the set of equations

ST R i R e S o

2t - (F

(3.4)

If, as will often be the case, UI > Q*, then 7 =0
and the shadow prices A can be determined by solving
the set (3.4) by backward recursion. (The cases when

UI = Q* or Ul = 0 for some i are degenerate cases

which are discussed in Chapter 7.) The shadow price e
represents the marginal operating cost reduction resulting
from an increase in the plant capacity x'. The shadow

price m represents the marginal cost of meeting additional

peak demand Q¥.
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Thus, as was true for the linear programming sub-
problem discussed in Chapter Two, this nonlinear operating
subproblem can be solved very easily by determining the
plant loading points Ui. Then the dual solution can be
obtained by a simple computation. It is not necessary to
use a mathematical programming algorithm, and hence, the
solution of the subproblems can be very efficient. This
special structure of the subproblems can be exploited in
designing an efficient procedure to solve the entire
capacity planning problem through the use of a decomposi-
tion technique. The next section discusses the application

of generalized Benders' decomposition.
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C. The Capacity Expansion Planning Problem and Its

Solution by Generalized Benders' Decomposition

Consider the structure of the capacity expansion
planning model using the nonlinear operating cost model.
There is an operating subproblem, described in the pre-
vious section, for each period t, which, in order to
simplify notation, can be written in the following matrix

form

minimize Ft(gt) (3.5)
subject to MU, = §.X (3.6)
N.U_ > Q. (3.7
t—-t - Qt T

Hee= 0

where X is the vector of plant capacities xjv'

gt is the vector of plant loading points,
Uit, in period t, and
Q: is the peak load in period t.
Then the objective function for the subproblem (3.2) in
period t is given by the function Ft(gt), the loading

order constraints (3.1) are represented by the matrix M,

the peak load constraint (3.3) is represented by the
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vector N, and the matrix Gt sorts the vector of plant

capacities into merit order, as described previodsly.

The problem of finding a minimum cost capacity

expansion plan can be written as

T
minimize C'X + I F _(U,) (3.8)
t=1
subject to MU, = §.X t=1,...,T (3.9)
*
NU, >0 (3.10)
.).{.Z.O'tho

where C is the vector of plant capacity costs. (Again,
for simplicity of notation, it has been assumed that all
elements of the capacity vector X are decision variables;
however, existing plants with given capacities could easily
be included in the formulation.) Written out in full,

this problem takes the form

| T r It 7k s
minimize ¥ I C, X. + I I F °f G (Q)dQ (3.8)
j=1 v=1 IV 3 t=1 i=1 pi-l.t
d - PR SR
it i-1,t it

subject to U~ - U "= I B0 it i

jgl w]. JV JV l"l,nnn,It (3.9)

t=1’..n’T
- - e
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iv

Qt t £ lpoooiT (3010)

X;o 20 Ut >

Define A, as a vector of dual multipliers
associated with each set of loading order constraints
(3.9) and ", as a dual multiplier associated with each
peak-load constraint (3.10). Then the Kuhn-Tucker
optimality conditions for the capacity planning problem

(3.8) - (3.10) give the following conditions

Alt _ A1+1’t = (Fi+1't-Plt)Gt(Ult) i= 1"'°'It-l
I t t L lpooo’T (3.11)
A& -m, =0
It a
{(assuming Uit >0 and U t Qt)
and
S S
cjv - I 21 X ij >0 for all j,v (3.12)
t=1 i=
with equality if xjv > 0.
I, t
(The degenerate cases when Uit =0 or U t . Q: are

discussed in Chapter 7.) The equations (3.11l) are just

* the equations (3.4) derived in the previous section. As
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noted before, they can be easily solved by backward
recursion for the shadow prices Ait. These shadow
prices are used in (3.12) to "price out" the capacity
varaibles va. If the cost of building a plant exceeds
the benefits derived from operating it ((3.12) holds with
strict inequality) then the plant will not be built

(va = 0).

A solution procedure can be suggested along the
lines of the Benders' decomposition of the previous
Chapter 2. Because of the nonlinear structure problem,

the generalized Benders' decomposition of Geoffrion [17]

must be used. However, because the cost function and

the constraints are separable in xjv and Uit, it

turns out that the master problem is a linear program.
Though the subproblems are nonlinear, they are solved by
inspection as discussed above. The basic idea in deriving
generalized Benders' decomposition is the same as that
used in the derivation of ordinary Benders' decomposi~

tion in the previous chapter, and the technical details

are discussed in Chapter 7.

The master problem, derived according to the discussion

of Chapter 7, is
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i minimize 2 (3.13)

» v zl E
z X k., .k
y subject to 2 > C'X + X[Ft(gt) + Atat(x -X)] k=1,...,K (3.14)
-7 . t=1 - R
|
} * A
| _e_.st_x_ZQt t = ll"'lT (3.15)
X>0

and any additional constraints imposed on the X in the

original problem.

The index k refers to trial solutions of the master and
subproblems generated at iteration k. The constraints
(3.15) insure feasibility in the subproblems. They can
be written in component form as

I

t it

r x*t s "
i=1 = 4&

t = l,---,T (3.15)

in which it can be seen that they require that sufficient

capacity be built to meet the peak demand in each period t.

As before, the master problem is solved by successively
generating the constraints (3.14). .Starting with an initial
trial set of capacities 51, the subproblems (3.5) - (3.7)
are solved for each period, and the shadow prices are
/calculated using (3.11) to generate the first (k=1)

Benders' cut (3.15). In general, a relaxed master problcm
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consisting of constraints (3.15) with k = 1,...,8~1 is
solved fcr a new trial capacity plan 52. The subproblems
are then solved with these capacities, and the associated
shadow prices (m ,),) are used to generate thelnext
Benders' cut, with k = £. The algorithm proceeds itera-
tively, alternating between the master problem and the
subproblems until optimality is achieved. WNote that the
use of the nonlinear functions Gt(Q) is confined to

the subproblems where no explicit optimization is per-
formed. The subproblems can be regarded as "black boxes"
which take the trial capacities xjv as inputs and
produce the shadow prices Ait as outputs and which
could be called as subroutines in the optimization algo-
rithm. The explicit optimization occurs in the master
problem, which is a linear program. A detailed dis-
cussion of the technical details of the solution algo-

rithm using generalized Benders' decomposition is found

in Chapter 7.
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CHAPTER 4 '

A MODEL FOR THF PROBABTLISTIC CAST

A. Introduction

This chapter discusses a formulation of the generating
capacity expansion problem which explicitly considers re-
liability standards defined by probabilistic measures.

The model is an extension of the nonlinear program developed
for the deterministic case in the previous chapter. This
extension is accomplished by using the technique of

probabilistic simulation% which calculates the impact

of random plant failures on 6perating costs and on ability
to serve demand. As will be shown, probabilistic simulation
generates operating subproblems which are directly analogous
to the subproblems of the deterministic model in the pre-

vious chapter.

The steps used to develop the probabilistic model 2
in this chapter parallel those used to develop the models
presented in the preceding two chapters. First, probabi-
listic simulation is explained and used to set up the
operating problem as a nonlinear program. Expressions are
derived for the expected system operating cost and for two

probabilistic reliability measures, loss-of-load probability

and expected unserved energy. The suitability of each for

defining reliability standards is compared. Shadow prices
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on the plant capacities are derived from the Kuhn-Tucker
conditions for the subproblem. Next, the capacity expansion
planning problem is formulated as a mathematical program,
with these operating problems incorporated as subproblems.
Then generalized Benders' decomposition is applied to
develop a solution procedure for this problem. As before,
the subproblem shadow prices are used to derive the master
problem, which, in this case as before, is a linear program.
The technical details of developing the solution procedure
are found in Chapter 8; those of computing the shadow
prices in Chapter 9. The chapter closes with a discussion
of an alternative treatment of reliability in the planning

model using costs rather than constraints.

Probabilistic methods have been in use for a long
time in evaluating power system reliabilityz. The
development of probabilistic simulation by Baleriaux
et al. and Booth3 marked a major advance by‘providing a
relatively efficient method for computing widely used
reliability measures and operating costs under probabi-
listic conditions. An attempt to integrate probabilistic
simulatién into mathematical programming models for capacity
expansion planning has been made in the Generation Expansion
Model (GEM) of Schweppe et 31.4 In this model, probabilis-
tic simulation is used as an operating subproblem, and the

capacity expansion model is a linear program. Communication
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between the subproblems and the linear program is achieved
using plant capacity factors, rather than shadow prices,

5 a

and convergence difficulties have been encountered.
similar approach has been taken by Beglari and Laughtone.
Telson8 used the GEM model in his study of the costs and

benefits of changing electricity-supply reliability levels.

The approach used in this chapter, using shadow prices
to interface the probabilistic simulation subproblems with
the mathematical program for capacity planning, has
apparently not been used before. This approach allows
the rigorous development of solution algorithms based on

decomposition theory for mathematical programs.
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B. Probabilistic Simulation and the Operating Problem

Consider the effects of random plant failures, or
outages, on the operation of the generating system. A
plant outage has two effects - first, it reduces the
total amount of energy the plant produces over a given
time period and second, it causes the plants above it in
the merit order to produce more energy, at higher cost,
in order to compensate. In addition, it is possible that
enough capacity will be down at some time that demand can-

not be satisfied, a condition known as loss of load.

The operation of a plant subject to random failures

is often regarded as an alternating renewal process7, which

is a stochastic process consisting of alternating periods

of operation and outage (see Figure 4.1). The time spent

in operation before a failure, m, and the time spent in
repair before a return to service, r, are randomly drawn,
independently from two different distributions, and each
failure-repair cycle is independent of, but probabilistically
identical to, the others. In steady state, the probability

of finding the plant in operation at an arbitrary moment is

=3

PR —
r

+

m

where the overbars indicate the means of the respective
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random variables. This probability p is called the

availability of the plant. 1In the following discussion,

its complement q = l-p will also be used.

Given that it operates, the load duration curve
faced by the first plant in the merit order is just the
system load duration curve, G(Q). Hence, the expected

energy produced by this plant in a given time period is

x1

P, | G(QaQ
0

where Py is the availability of the first plant, and

2 v

X~ is its capacity.

To derive an expresssion for the expected energy
produced by the second plant in the merit 6rder, an argu-
ment in conditional probabﬂiity is used. The second plant
faces two alternative situations depending on whether or
not the first plant is éperating. Given that the first
plant is operating, the second plant is loaded after the

first and produces expected energy
Py / G (Q) dQ.

This situation occurs with probability Py- Given that the

first plant is not operating, the second "drops down" in
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the merit order and produces expected energy

x2

P, é G(Q)do.

This situation occurs with probability q = l-pl. Thus,

the expected energy produced by the second plant is

xL4x2 x2

P, (P, fl G(Q)dQ + qy g G(Q)dQ)
X

or
p, /. {p,6(@)d0 + gq;G(o-x") }do,

where the term in brackets is the equivalent load duration

curve faced by the second plant (see Figure 4.2).

Using this same conditional probability argument
for each successive plant, the equivalent load duration
curve for the i + 1= plant in the merit order is defined

by

Gi41(@) = P3G, (Q) + q6;(@-x") i =1,...,I (4.1)

G(Q).

where Gl(Q)

This recursive relationship is known as probabilistic

simulation. The expected energy delivered by the iEh plant




-

(=]

(=4

83.

¢(Q)

Duration

X Q Q

1. The first plant faces the systém load duration curve.

Duration

*
vt Q x! Q
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4, The equivalent load duration curve faced bv the second plant
is the sum of these twe curves weighted by their probabilities.

Figure 4.2
Derivation of the Equivalent Load Duration Curve

(Adapted from Finger {13].)
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in the merit order during the given time period is then

Ui
Ui-l

where, as before, U is the cumulative capacity defined

by

U ey =X i=1,...,I - (4.2)

The expected cost of operating the system during the given

period is
g vt :
_zl Fp; [, lGi(Q)dQ. (4.3)
i= il=

U

Note the similarity of this expression to the corresponding

cost expression in the deterministic case (3.2).

Since each plant has a non-zero probability of failure,
it is not possible to guarantee with certainty that demand
will always be satisfied. It is possible that enough plants
will have failed at one time that the load will exceed the
available capacity. The 'ikelihood of this occur—ing is

often measured by the lc: -of load probability (LOLP), which

is defined as the expecte¢u amount of time during which the
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load will exceed the available capacity during a given time

period. The LOLP is given by
LOLP = G, (ul)
I+l

since the equivalent load duration curve GI+1(Q) repre-
sents the load remaining to be served after all the plants
have been loaded (see Figure 4.3). This measure is called
a "probability" because the load duration curve is often

regarded as being analogous to a probability distribution

for demand.

The loss-of-load probability can be used as a relia-
bility criterion for design. Instead of the peak-load
constraint (3.3), which is no longer a useful standard,

a reliability constraint of the following form is used:
Gy, (0D <€ (4.4)
I+l - 1

where ¢ represents the desired reliability level (a

typical design target is a LOLP of one day in ten years).

It has been argued (see, for example, Telsona) that
the loss-of-load probability is not an entirely satisfactory
measure of reliability, since it takes account only of the

likelihood that some load will not be met and not of the
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size of the deficit. For example, failure to meet the

load byone kilowatt contributes as much to the LOLP as a
failure of one megawatt, even though the latter failure
would clearly have a more serious impact. A more satis-
factory measure would weight the probability of loss of
load by the size of the outage. Such a measure is provided

by the expected unserved enerqgy (sometimes known as the

loss-of-energy probability)

<

IIGI+1(Q)dQ

U
which is the expected amount of energy demanded that the
system fails to provide (see Figure 4.3). Although this

9 has

index is not yet widely used in the industry, Telson
argued that it and related indices provide a "more satis-
factory measure of reliability for the purpose of measuring

reliability benefits.”

An additional reason for preferring the expected
unservedenergy to the loss-of-load probability as a relia-
bility measure in this mathematical programming model is
that expected unserved 2nergy is more tractable mathemati-
cally. Because it has the same form as the terms of the
operating cost function derived above (4.2), it is, in a

certain sense, "compatible" with them. This compatibility
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will be used in Chapters 8 and 9 in proving convexity
properties for the problem and in computing shadow prices.
Vhile LOLP (or other probabilistic reliability measures)
could be used in this planning model, the expected unserved
energy will be used here because of these two advantages

it has over the LOLP.

Thus a reliability constraint on expected unserved

energy will be imposed

| 6, @a0 <ce : (4.5)
UI

where € represents the desired reliability standard.

The problem of minimizing the expected operating cost
subject to the reliability constraint is the operating
subproblem in this probabilistic case, analogously to
the deterministic operating subproblem discussed in the °
previous chapter. In this probabilistic case, however,
the structure of the problem is somewhat more complicated.
Since minimum cost is achieved when the reliability con-
straint is exactly satisfied, some of the plants may not
be used at full capacity in the optimal solution. Let

i

¥' be the utilization level of the i‘" plant in the -

merit order, where

0 <y < i,
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Usually this utilization level will be set equal to
capacity., However, if the system has excess capacity,

more than is required to'satisfy the reliability constraint,
some of the more expensive plants high in the rerit order
may be shut down, Their utilization levels would be

set to zero.

The operating subproblem for the probabilistic

model can then be stated as

T ul
minimize I F'p; [ G; (Q)dQ (4.6)
i=1 pi-1
(-]
subject to fI Gr, (@A < € (4.7)
U
0o <yl <yt 4.8)
where the plant loading points are now defined by
vl - pi=l oyl i=1,...,I (4.9)

with U =0 -

and the equivalent load duration functions, written to

show their ¢ -endence on Yi explicitly, are

b

1 i jia
G QY7 4eee,Y7) = Piﬂi(Q’Ylv---,Yl )

B qici(Q-yl;Yl,...,yl“l) £ 8% v oay
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with Gl(Q) = G(0). (As before, though the system load
duration curve, operatirq cost coefficients, and merit
[ order all depend on the period t, this index has been
suppressed for clarity of notation. It will he introduced
below, where needed.) Again the plant capacities Xi

| are considercd constant data in the subproblems.

The optimal solution to this subproblem is in-
tuitively simple: Set Y = X' successively in merit
order until the unserved enerqgy constraint (4.7) is

exactly satisfied. The last plant so loaded, the

marginal plant, will generally not have to be used to
capacity. The plants above the marginal plant will not
be useds Let n be the merit order index of the marginal
plant; then this solution can be written

i i

Y- = X for i <n

0 for i > n
and Y" is set so that
(]
/] G, (@da=c¢
i

with 0 < Y" < x™, Because of the simplicity of this

e e g T S
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solution, an explicit nonlinear optimization algorithm
is not needed to solve the subproblem, thus reducing

the computation required to solve the prohlem. (low-
ever, calculation of the equivalent load duration curves

can be computationally burdensone.)

The subproblem also gives shadow price information
on the plant capacities, Define 7 and Ai as the
dual multipliers associated with the unserved energy
constraint (4.,7) and with the capacity constraint in
(4.8), respectively. ~hese nultipliers must be non-
negative because the constraints are inequalities.
Assuming that the subproblem is feasible and that the
degenerate cases xi =0 or ¥ =x' do not arise, the

Kuhn-Tucker condition for the problem givé the followina

expressions for these shadow prices

1 vl .
i eos Fjpj 2] Gy @yt ..., v Yag
j=1 oyt 3-1
3 1 T '
el — II Gy, (Q5Y 4ee.,¥)d0 for i <n (4.10)
U

= 0 for i >n

and 7 = F', The multiplier = is just the marginal

cost of decreasing the unserved enerav €, which,
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intuitively, is the cost of operating the marginal plant.
The multipliers A1 measure the benefit of increasina

the capacity P

Thus, as was true for the linear and nonlinear
programming models discussed previously, the operating
subproblems can be solved without using an explicit
optimization algorithm. The dual solution ‘can be
obtained from the Kuhn-Tucker conditions. The compu-
tational work involved in solvinc the subproblem arises
from the probabilistic simulation recursion (4.1) and
from computing the derivative terms in (4.10).. The
use of probabilistic simulation in the subpfoblems can
be integrated into a capacity planning nodel throuch
the use of a decomposition principlé. The next section
discusses the application of generalized Bende)

decomposition,
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C. The Capacity Expansion Planning Model and Its Solution

by Generalized Benders' Decomposition

Consider the structure of the capacity expansion
planning model in the probabilistic case. There is an
operating subproblem, described in the previous section,
for each period t in the planning horizon, which can be

written in the following vector form

minimize EFt(Xt) (4.11)
subject to EGt(xt) <€, (4.12)
02Y <8X (4.13)
where, as before, X is the vector of plant capacities
vau
Y  is the vector of plant utilization levels, Yit, in

t
period t, and

€¢ is the desired reliability level.
Then the objective function (4.6) for the subproblem in

period t is given by the function EF _(Y,), the capa-

city constraints (4.8) are represented by (4,13),
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the expected unserved energy (4.7) is represented by the
function EG (Y ), and the matrix ¢, sorts the vector

of plant capacities into merit order.

The problem of finding a minimum cost capacity ex-

pansion plan can be modeled as follows

T
minimize C'X + I EF,_(Y,) (4.14)
== 5 t'=t
t=1
subject to EGt(zt) <€ t=1,...,T : (4.15)
0 <¥ <8.X (4.16)

where C 1is the vector of plant capacity costs. (As
before, for simplicity of notation, it has been assumed
that all elements of the vector X are decision variables.)

Written out in full, this problem takes the form

J T e T
minimize I I C. X. + I I F p, [ G; . (Q)aQ (4.14)
j=1 v=1 ¥ t=1 i=1 - gLl
[}
subject to II N GIt+l,t(Q)dQ s L (4.15)
t'
U
J ot
it it
0.6 g 3 I ijxjv_

: 1 ‘] tgl'...'T (4.16)
J= v=e 5
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The Kuhn-Tucker conditions for this problem define

an optimal solution to the dual, as

will be shown in chapter g, Define A, as a vector

of dual multipliers associated with the set of cappa-

City constraints in period t (4.16) and w_ as the dual
multiplier associated with the reliability constraint in
period t (4.15). Then, assuming the problem is not
degenerate, asvdiscussed in the previous section, the

Kuhn~Tucker conditions for the capacity planning

problem (4.14)-(4.16) give the following conditions

J9EG JEF

it € i & ity e ol gk
A + ‘ntaylt = - ;;rt- ' "t (4.17)
t=1,...,T
where . pht
and
I
Tt .. .
Ciyy - E I A%t >0 forall v (4.18)
W e imd v

with equality if va > 0.

The equations (4.17) are just the equations (4,10)
derived in the previous section. As noted before, they
can be solved for the shadow prices

it

A"". These shadow prices are used in (4.18) to "price

out" the capacity variables va. If the cost of building
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a plant exceeds the benefits derived from operating it

((4.18) holds with strict inequality) then the plant will

not be built (xjv

0).

Just as generalized Benders' decomposition can be
used to solve the deterministic capacity planning problem
given in Chapter 3,‘so too it can be used to solve the
probabilistic model given in this chapter. The technical
details of applying the decomposition are given in
Chapter 8. The master problem in this case also turns
out to be a linear program; the subproblems are nonliear,
but they are solved using probabilistic simulation and an
explicit optimization procedure is not required. It turns
out that a major computational difficulty is to compute
the derivatives which appear in (4.10), This difficulty
arises because the equivalent load duration curves Gi(Q)
are defined recursively. In Chapter 9, several alternative

methods for computing the shadow prices are discussed.

The generalized Benders' master problem, derived

according to the discussion of Chapter 8 is

minimize Z (4.19)
2,X
= K, k. ok
subject to 2 > C'X + I [EF (¥ )+A 6, (X -X)] (4.20)
t=1
k=1'-o-'K
k Rt
I OIEG (Y,) + M8 (XT-X)) < L ey (4.21)
tel tel
k k
x>0

= vt e

A Lo
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As before, the index k refers to trial solutions of

the master and subproblems generated at iteration k.

The constraints (4.21) insure feasibility in the subprob-
lems; they are generated when a trial solution 5# does
not satisfy the reliability constraint in the subproblem.

The multipliers are generated by the infeasible

He
subproblems, and Ty is the set of indices t of the
subproblems in which the k—'i}—1 trial solution is infeasible.

Once again, the master problem is solved by successively

generating the constraints (4.20) and (4.21). Starting

with an initial trial solution for the plant capacities 51,

the subproblems (4.6)-(4.8) are solved for each period,
to generate the first Benders' cuts (4.20) and (4.21).

In general, a relaxed master problem consisting of con-
straints (4.20) and (4.21) with k=1,...,%-1 1is solved

for a new trial capacity plan xz. The subproblems are

then solved with these capacities, and the associated

shadow prices At and Hﬁ are used to generate the
next Benders' cuts with k = £. The shadow prices Az

are determined from (4.17). If the trial solution Xz

produces an infeasible subproblem in period t (that is,
the reliability constraint (4.12) is viola: ), then
the multipliers Et are computed, using a ::rocedure

similar to (4.17), as will be discussed in 7 hapter =.
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The algorithm proceeds iteratively, alternating between
the master problem and the subproblems until optimality

is achieved. Note that the use of the complex nonlinear
functions Gi(Q) is confined to the subproblems where

no explicit optimization is performed. The subproblems
isolate the probabilistic simulation from the optimization
performed in the master problem. But the optimization in
the master problem is a linear program. Thus, a difficult
nonlinear, stochastic program can be solved as a sequence

of linear programs by the use of decomposition.
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D. An Alternative Treatment of Reliability

Some authorslo, notably those discussing peak-load
pricing, have taken an alternative approach to including
reliability in capacity expansion planning models. Rather
than constrain the level of reliability, as in (5.4) or
(4.5), they have preferred to charge a cost for loss of
load. This cost is representative of the economic and

social costs of unserved demand and has sometimes been

called a rationing cost. The rationale for charging a

cost rather than setting a target is that the reliability
should be set at a level where the marginal cost of pro-
viding additional reliability is just equal to the marginal
rationing costs avoided by such an increase. Since, in
practice, the desired reliability standard € is often

set rather arbitrarily, the use of rationing costs provides
a logical economic reason for determining it. On the other
hand, actual measurement and estimation of rationing costs
is difficult (an important study on this subject has been made
by Telsona), so that in actual applications, they may be

no less arbitrary than direct estimates for reliability

standards.

There is an important dual relationship between the 8
reliability level and ti.e rationing cost in the following

sense - for any level of reliability e, optimal solution

e e ——— — i ———
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of the capacity expansion planning problem (4.11)-(4.13)
determines shadow prices on the reliability constraints
(4.13). This shadow price represents the marginal cost
of providing additional reliability and gives a ceiling
on the value of the marginal rationing cost for which this
level of reliability is adequate. Parametric analysis
could determine a relationship between ¢ and the shadow
price to provide a trade-off function for reliability

level versus marginal cost.

An equivalent alternative is to put a multiplier on
constraint (4.13) and add it to the objective function
(in effect, letting € be a decision variable). This
multiplier represents the marginal rationing cost, and
for any value, the capacity planning model will determine
an optimal level of reliability. The problem Becomes, in
a sense, a multi-criterion optimization, since the cost of
supplying electricity and the level of reliability would
now be optimized jointly. Again, parametric analysis could
be used to determine a trade-off frontier between cost and
reliability. This approach may also have computational
advantages, since it may be difficult to find trial solutions’
which satisfy the reliability constraints, at least in the

early iterations of the algorithm,
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Perhaps the essence of the rationing cost approach
is the idea that reliability of service is an attribute
of the demand for electricity and that as such it should
be economically determined. Since a substantial part
of the rationing costs are borne by the buyers of electri-
city, reliability should be set at a level for which the
customers are willing to pay. However, the capacity
planning model discussed in this chapter is a supply
model dealing only with the costs of supplying electricity.
Therefore, it takes demand and its attributes as given.
In Part Three of this thesis, this supply model will be
embedded in a larger model in which demand for electricity
varies with price. In this la;ger model, the reliability
standard can be regarded as price-dependent, linked to
the supply model through a constraint of the (4.13), thus
providing the economic rationale for these constraints.
Hence, this integrated model resolves the two approaches
into a single treatment. This topic is discussed again

in Part Three.
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CHAPTER 5

SOME COMPUTATIONAL RESULTS

A. Introduction

This chapter discusses an implementation of the
probabilistic capacity planning model, presented in the
previous chapter, and presents the results of some ex-
perimental runs. The algorithm was implemented by
modifying the MIT Generation Expansion Model (GEM) of
Schweppel. The major modifications required were the
addition of a roptine to calculate the shadow prices
within the probabilistic simulation and the modification
of the linear program to solve the generalized Benders'
master problem. Three test problems were run using data
based (loosely) on the characteristics of a New England
utility. The results of these runs indicate that the
algorithm can indeed produce a sequence of trial solutions
which get successively closer to an optimal feasible
solution. However, the runs were not able to achieve
feasibility within the allowed number of iterations, and
there are indications that convergence of the algorithm

may be show.
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B. Implementation

The probabilistic ‘ ipacity planning model proposed

in Chapter 4 was implemented for testing purposes by

)

modifying the MIT Generation Expansion Model (GEM). Gz

is a detailed utility planning model intended for production
(rather than research) use. As such, it contains many
facilities which have not been included in the models
discussed in this thesis; however, it is similar in structure

to the models discussed here.

GEM consists of three major, integrated submodels.

The plant evaluation model is used to determine feasible

plant designs which meet the environmental quality standards
set for various types of sites. This model screens out
unacceptable alternatives and evaluates plant performance

characteristics for acceptable alternatives. The plant

expansion model determines a least cost capacity expansion

plan, using linear programming. The plant operation model

determines the operating costs of the plants built by the
plant expansion model, using probabilistic simulation.

The relationship between the expansion model and the
operation model in GEM is very similar to the relationship

between the master problem and subproblems in the models

——————
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presented in this thesis. However, in GEM, the operation
model is used to calculate a capacity factor for each plant,
and this information is used to calculate operating costs

in the expansion model.

Because of its similarity to the probabilistic capacity
planning model described here, GEM was chosen as the starting
point for implementation. Specifically, many of the routines
and data structures required for implementing the model were
already available in GEM. Two major modifications were
required. In the probabilistic simulation program SYSGENZ,
a routine to compute the subproblem shadow prices had to
be added. This routine uses the formulas derived in Chapter 9.
In the linear program, a different type of matrix had to be

generated, corresponding to the generalized Benders' master

problem. Also, the plant evaluation model was not used.

The algorithm implemented for solving the subproblem
is an earlier, slightly different version of the one
discussed in Chapters 8 and 9; however, for the test
problems run, this difference is believed to be unimportant.
A flow chart showing the overall structure of the program

is given in Figure 5.1.

In order to test the routine which computes the shadow

prices, a test problem was designed based on the Binomial
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distribution. This distribution has the property that the

convolution of two Binomial distributions with the same
probability parameter is again a Binomial, and the order
of this distribution is the sum of the orders of the two
which were convolved. The test problem used a cumulative
Biromial distribution for the load duration curve, and all
plants were of unit size with availability equal to the
prcbability parameter of the distribution. Thus, all of
the equivalgnt load duration curves and the functions Hij
(discussed in Chapter 9) should also have been Binomial.
Therefore the answers given by the computation could be

checked against a table of the Binomial distribution.

This problem provided a convenient test case for debugging.
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C. Results of Test Runs

Three test problems wererun. The data for these
problems is summarized in Tables 5.1 and 5.2. In all
the problems, the same load duration curve was used in
the first year of the planning horizon. In subsequent
years, this curve is scaled up by the growth rate specified
for the problem. In each year of the planning horizon, the
model can build plants of three alternative types, the
characteristics of which are given in Table 5.2. Aalthough
the model can build plants of any size, the data are given
for a standard size plant, listed in the table. In addition
to these new plants, there are five committed and existing

plants, also listed in Table 5.2.

The short planning horizons used tend to discriminate
against high capital cost plants, since the full benefits
of installing these plants cannot be recovered in a few
years. In order to compensate for this effect, it was
assumed that the system configuration and load characteris-
tics of the last year of the planning horizon would prevail
in all subsequent years, forever. Thus, each plant will
be replicated at the end of its life, and all plants will
operate in the same way as in the last year of the

horizon throughout the infinite extension period. The
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TEST PROBLEMS

Four yvear planning horizon without extension costs
Load growth rate 40%/year (doubles in 2 years)
Four year planning horizon with extension costs
Load growth rate 40%/year (doubles in 2 years)
Nine year planning horizon with extension costs

Load growth rate 8%/year (doubles in 9 years)

LOAD DATA
For initial year of the planning horizon

Peak Load - 2100 MW
Energy Demand - 11,275,000 MWH
Load Factor - 60%
Unserved Energy Constraint < 2.8% of Energy Demand
(for all years)

Discount Rate is 10.8% in all problems

TABLE 5.1

PROBLEM SUMMARY
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discounted costs of replicating and operating plants

throughout this period, called the extension costs, were

included in two of the problems, B and C. (The nine year
horizon of Problem C is the longest permitted by the data arrays

used in the program.)

The results of these test runs are shown in Figures 5.2,
5.3 and 5.4. The graphs in these figures show how the
_linear program optimal value, which is a lower bound on
the optimal cost, and the total unserved energy over the
horizon, which is a measure of the degree of infeasibility
of the current solution, vary with the iteration number.
(Again,because of array size limitations, only nineteen or
twenty iterations could be performed.) As these figures
indicate, the iteration procedure moved toward feasibility
and optimality in all of the problems. However, within
the number of iterations allowed, the algorithm did not
find an optimal or even a feasible solution. Furthermore,
the trial plant capacities generated at each iteration did
not appear to stabilize but instead continued to change

significantly from iteration to iteration.

Because the trial solutions never attained feasibility,
it was not possible to establish upper bounds on the optimal
cost to compare with the lower bounds. Hence it is not

possible to determine how close the algorithm came to

S ——— T ——
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optimality. The failure to attain feasibility is easy to
explain. First, the reliability constraint is a hard,
nonlinear constraint so that finding feasible solutions
is, not unexpectedly, difficult.:- Second, the algorithm
used to solve this problem uses outer approximations of
the feasible region. These outer appro#imations are
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